

Investigation of Active Pedestrian Protection Systems using the Biofidelic Dummy and Component Tests

ADAC Technik Zentrum Landsberg

David Altkofer

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - **2.2** Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

1. Motivation

- goal: use deployable bonnets in conjunction with ADAS and avoid contact based sensors
- more time until collision means more time to take action (e.g. more distance)
- more safety potential for VRUs
- main problem is the irreversibility which leads to false-positive-risk
 - not applicable with ADAS sensors
 - remedy: reversible mechanism (e.g. hood lock)

1. Motivation

aims of the project

- > investigate the safety potential for VRUs using a reversible mechanism for deployed bonnets
- therefor comparison with three bonnet configurations

 - front deployed deployment using the hood lock mechanism
- > testing in full-scale-tests with a biofidelic crashtest dummy and the established test specimens
- generating recommendations / proposals

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - **2.2** Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

2. Testing with deployable bonnets

Konfiguration	Test Specimen / Dummy	Testnumber	
Full-Scale-testing			
Reference	Primus breakable	PP4223AAFR	
State of the Art	Primus breakable	PP4523AAFS	
Front Deployed	Primus breakable	PP5123AAFF	

Component-testing					
test series for comparison with Full-Scale-tests PP0224AAC1					
Reference	Adult Head	AACAR08+0			
	Upper Leg	AACUR+0			
	aPLI	AACLR+0			
	Adult Head	AACAS08+0			
State of the Art	Upper Leg	AACUS+0			
	aPLI	AACLS+0			
	Adult Head	AACAF07+0			
Front Deployed	Upper Leg	AACUF+0			
	aPLI	AACLF+0			
test series for further evaluation		PP0224AAC2			
Reference		AACCR01+5			
Releielice	Child Head	AACCR04-7			
State of the Art		AACCS01+5			
		AACCS04-7			
Front Deployed		AACCF01+5			
		AACCF04-7			

2. Testing with deployable bonnets

https://www.euroncap.com/en/car-safety/the-ratings-explained/vulnerable-road-user-vru-protection/head-impact

Adult / Child Head

Upper Legform

aPLI

2. Testing with deployable bonnets

modifications

lifting the rear edge by modified hinges

➤ generating 100mm at WAD1700

lifting the leading edge by compression springs (total rate: 80N/mm)

➤ generating 40mm

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - **2.2** Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

2.1 Full-Scale-testing

biofidelic crashtest-dummy "Primus breakable"

- > anthropomorphic manikins are subject to the compromise between durability and biofidelity
- > focus on biofidelity
- replacement materials for bones, muscles, tendons, ligaments, ...
- > technical obduction after a crash
- > acceleration sensors in head, chest and pelvis

2.1 Full-Scale-testing

positioning of the dummy

2.1 Full-Scale-Testing

evaluation - Injury criteria

criterion	reference	state of the art	front deployed	limit values	
Head: HIC ₁₅	3.707	4.037	5.688	700	
Head: a _{3ms}	99 <i>g</i>	210g	122g	80 g	
Head: ares, max	ead: $a_{res, max}$ 377g		536g	300 g	
Head: BrIC	•		1,07	1,0	
Head: ä _{res, max}	Head: $\ddot{\alpha}_{res, max}$ 13.584rad/s ²		18.435rad/s ²	1.800 7.500 rad/s²	
Chest: a _{3ms}	hest: <i>a</i> _{3ms} 29g		33g	40 60 g	
Chest: ares, max	Chest: a _{res, max} 33g		57g	80 g	
Pelvis: a_{3ms} 44g		40g	56g	50 80 g	
Pelvis: $a_{res, max}$ 189g		181g	310g	80 g	

> key message: no improvement by the bonnet deployment

2.1 Full-Scale-testing

head velocity

PP4523AAFS

PP5123AAFF

17

2.1 Full-Scale-Versuche

evaluation – head velocity shortly before collision

6D-Tracking

integration

comparison:

 $v_t = 11,11 \text{ m/s}$

(40km/h)

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - 2.2 Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

testpoints

two different test series

> PP0224AAC1 comparison with Full-Scale-Tests

→ PP0224AAC2 investigating the added value for smaller VRUs

20

Adult & Child Head

Upper Legform

$$v_t = \sqrt{\frac{2En}{10,5kg}}$$

$$En = 0.5 \cdot m_n \cdot v_c^2$$

$$v_c = v_0 \cdot cos(1,2\alpha)$$

https://www.euroncap.com/en/for-engineers/protocols/vulnerable-road-user-vru-protection/

Advanced pedestrian legform impactor

$$h = \frac{g d^2}{2v_t^2} \qquad \qquad \phi = \tan^{-1} \left(\frac{gd}{v_t^2}\right)$$

evaluation of test series PP0224AAC1 (comparison with full-scale-tests)

criterion	reference	state of the art	front deployed	limit values	
AH: <i>HIC</i> ₁₅	698	267	428	650 1.700	
AH: a _{3ms}	90g	75g	79g	80 g	
AH: a _{res, max}	123g	94g	139g	300 g	
UL: F _{ges, max}	5.886N	4.871N	4.297N	5 6 kN	
aPLI: M _{B, Femur, max}			419Nm	390 440 Nm	
aPLI: I _{MCL, max}	28mm	30mm	26mm	27 32 mm	
aPLI: M _{B, Tibia, max}	255Nm	297Nm	280Nm	275 320 Nm	
total points	2,670	3,366	3,317	_	

> key message: improvement by the bonnet deployment

evaluation of test series PP0224AAC2 (Child Head)

testpoint criterion		reference	state of the art	front deployed	limit values	
vo diotov	HIC ₁₅	1765	721	686	650 1.700	
radiator	a_{3ms}	149g	83g	83g	80 g	
support	a _{res, max}	226g	139g	126g	300 g	
transition to fender	HIC ₁₅	1659	660	865	650 1.700	
	a_{3ms}	148g	85g	83g	80 g	
	a _{res, max}	171g	104g	106g	300 g	
				_		
total points		2,920	4,866	4,817		

key message: improvement by the bonnet deployment

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - **2.2** Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

3. Comparison

Primus breakable

VS

AdultHead & aPLI

body region	criterion	reference	state of the art	front deployed	reference	state of the art	front deployed
Head	HIC ₁₅	698	267	428	3.707	4.037	5.688
Neck	injury	-	-	-	torsion cs	no injury	deformation cs
Chest	a _{3ms}	+	-	-	29g	30g	33g
Cirest	injury	-	-		no injury	vertebra fracture	rib fracture
Upper arm	injury	-	-	-	shoulder disl.	no injury	no injury
Lower arm	injury	-	-	-	fracture	fracture	fracture
Pelvis	a _{3ms}	48g	50g	48g	44g	40g	56g
PEIVIS	injury	+	-	-	fracture	fractures	fractures
Femur	M_B / injury	376Nm	382Nm	419Nm	no injury	no injury	skin rupture
Knee	/ _{MCL} / injury	28mm	30mm	26mm	no injury	no injury	no injury
Tibia	M_B / injury	255Nm	297Nm	280Nm	fracture	fracture	fracture
Foot	injury	-	-	-	fracture	no injury	fracture

3. Comparison

critical view & findings

- according to the dummy, head-velocity and loads are many times higher than assumed
 - pedestrian-vehicle collision has complex kinematics, in particular due to
 - body posture and biofidelity of the dummy
 - front design of the test vehicle
- test specimens can only partially represent pedestrian-vehicle collision
 - deformation by upper body is not represented
- basically, according to component tests, great potential of the active hoods

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - **2.2** Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

Activation of reversible bonnets

- be in place before the impact
- Should give benefit to ADAS systems
- Close the gap of active and passive systems
- Scenarios more demanding than ADAS functions
- Benefit in passive safety testing in deployed mode

Possible Scenarios

- crossing and junction pedestrian and cyclist
- Obstruction near side child
- Stability, scenarios, such as different pedestrian types

Summary

- Pre-crash triggered APP systems should be encouraged. Suitable systems may then qualify for testing in the deployed position.
- There must be common level of stringency between the requirements of contact systems and pretrigger systems.
 - Hardest to detect pedestrian approach required
 - Functionality in the most challenging scenarios
 - Bonnet deflection due to body loading
 - Robustness required in pre-crash scenarios
 - Fully deployed before impact
 - Speeds up to 45kph for robustness reasons

- 1. Motivation
- 2. Investigation of the potential of reversible active bonnet systems
 - 2.1 Results of Full-Scale-Tests
 - **2.2** Results of Component-Tests
- 3. Comparison
- 4. Activation of reversible bonnets
- 5. Integration into consumer protection projects

4. Conclusion

recommendations / proposals

- more testing with varied constellations to validate the results!!!
- in the future, headforms could be tested with different speeds (analogue to the angle) depending on vehicle segment respectively the test area
- extend the scope of tests by full-scale-testing
 - to validate the loads on VRUs
 - to validate the numerical simulations (HIT vs. WAD)
 - in the future: to validate the fully deployed hood triggered by ADAS before impact with VRU
- additional points for robustness
 - direct blinding of the systems by headlights when driving at night
 - disguising the dummies

Thank you for your attention

Questions?

Modified hinges

State of the Art

Compression springs

Front deployed

Dummy positioning

Dummy positioning

Crash Area

Crash Area

Hanging set up

triggering signal

pneumatic reservoir is discharged

- → hook opens
- → dummy falls

Hanging set up

Test Vehicle Interior

Measuring equipment

Vehicle Marking

Biofidelic Dummy "Primus breakable"

Technical obduction

Evaluation - Injury mechanisms

body region	reference	state of the art	front deployed
Head & Neck	- abrasions - torsion der cervical spine	- abrasions	- abrasions - deformation of cervical spine
Upper body & Arms	- fracture of lower arms - shoulder displacement left	 fracture of lower arms fracture of thoracic vertebra T6 fracture of ribs L2 & L3 	- fracture of lower arms - fracture of rib L3
Pelvis & Legs	- fracture of hip bones - fracture of both tibia - fracture of both ankle joints	- fracture of hip bones - fracture of pubis - fracture of both tibia	 fracture of pubis and sacrum fracture of hip bones skin rupture of both legs fracture of both tibia rupture of lower leg histoid left fracture of ankle joints

Evaluation – pattern of damage

Crash Area

Headform testing

Upper Legform

aPLI

