

Need for a biofidelic dummy to determine triggers for Event Data Recording

- in collisions against vulnerable road users (VRU)
by measuring, evaluating and recording of acceleration Erforderlichkeit eines biofidelen Dummy zur Bestimmung der Trigger
für die Ereignisdatenaufzeichnung im DER auch bei Kollisionen mit
vulnerablen Verkehrsteilnehmern

Prof. Dr. Dipl.-Ing. Michael Weyde

Publicly appointed and sworn in Expert for Accident Reconstruction and Evaluation of Accident Data Storage Systems Member of the Board of the European Association for Accident Research and Analysis, EVU

Increase of killed vulnerable road users – especially Pedestrians and Pecedels Zunahme der getöteten vulnerablen Verkehrsteilnehmer – insbesondere Fußgänger & Pedelec Getötete bei Verkehrsunfällen nach Art der Verkehrsbeteiligung Getötete¹ 2021 Krafträder mit Versicherungskennzeichen 41 53 56 Elektrokleinstfahrzeuge (E-Scooter) Krafträder mit amtlichen Kennzeicher 497 473 511 492 Güterkraftfahrzeugen 104 116 127 Fahrrad ohne Hilfsmotor 249 256 266 241 192 190 208 131 Fußgängerinnen und Fußgänger 2: Vorläufiges Ergebnis. Stand 27. März 2025

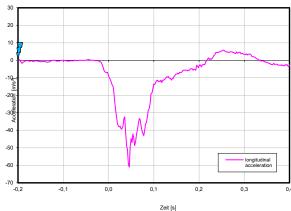
Based on the positive experience in the US in 2019 the EU Parliament adopted a new general safety regulation in which Event Data Recorder (EDR) in all M1 and N1 vehicles are mandatory for new type approval after July 2022:

The introduction of event data recorders storing a range of crucial anonymised vehicle data, accompanied by requirements for data range, accuracy, resolution and for its collection, storage and retrievability over a short timeframe before, during and immediately after road accident (for example, triggered by the deployment of an airbag) is a valuable step in obtaining more accurate, in-depth accident data. All motor vehicles should therefore be required to be equipped with such recorders ...

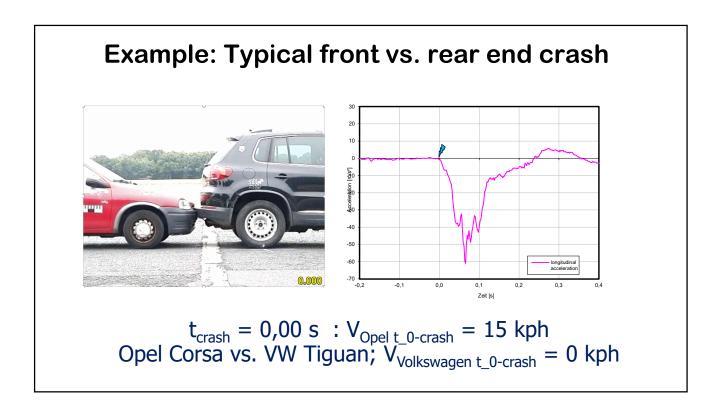
Specifications of what cars in the US have to save as an minimum data set, if either an airbag deployed or delta-v exceeded 8 kph within 0.15 s¹

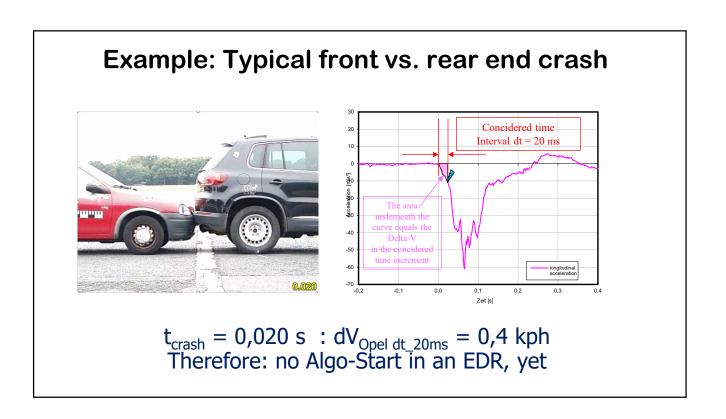
Parameter Relevant for accident reconstruction	Duration / Start-time (relativ to start of algorithm and/or deployment time [t0])	sample rate/ frequency in Hz (values per second)
Delta-V longitudinal (cumulative change in speed over time)	0 – 250 ms	100 Hz
Maximum speed-change within 300 ms	0 – 300 ms	n. n.
Time until reaching the maximum Delta-V	0 – 300 ms	n. n.
Vehicle indicated Speed (average wheel speed in a period of 0,5 s) $$	-5 – 0 s	2 Hz
Position of Throttle and/or Driving-Pedal (%-value of its maximum)	-5 – 0 s	2 Hz
Activation of service-brake (yes/no)	-5 – 0 s	2 Hz
Usage of the belt (contact on belt-buckle of Driver/ Passenger) [yes/no])	-1 s	n. n.
Airbag-warning-light (on/off)	-1 s	n. n.
relative time and duration of any Airbag-deployment	complete event-time	n. n.
Time between 2 deployments, if the Airbag is deployed in stages	as long as it take	n. n.

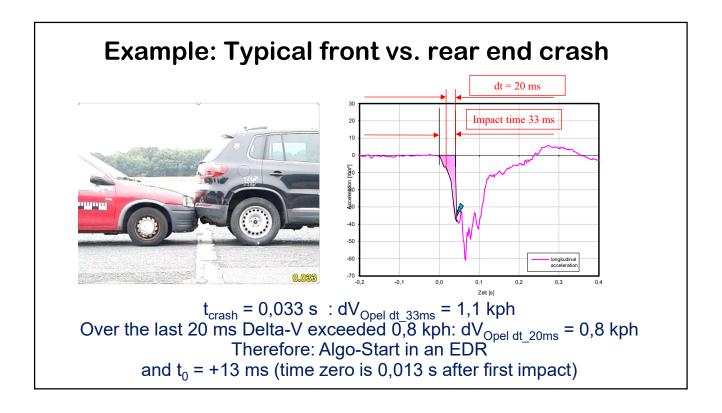
1) Part 563 Nat'l Highway Traffic Safety Admin. - Event Data Recorders according www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol6/pdf/CFR-2011-title49-vol6-part563.pdf

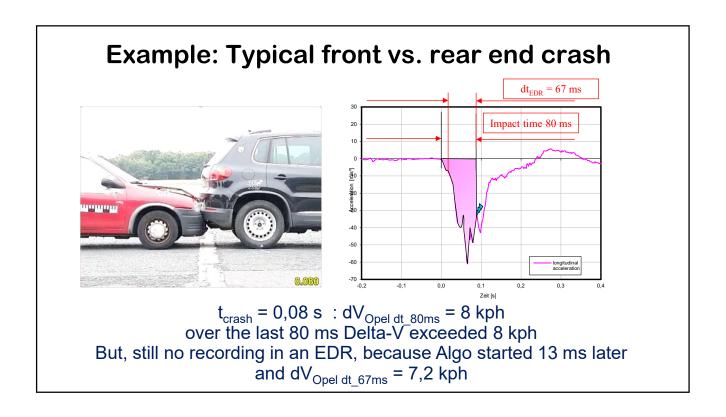

What triggers storage in the EDR?

- 28.5 28.75 29 2-up
- 1.) Deployment-Event "Airbag, Pretensioner, Pop-Up Hood"

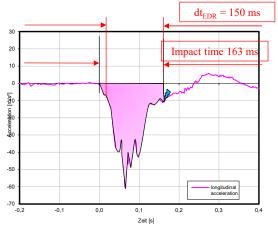

 When a non-reversible restraint system is deployed, time t = 0 is the "wake-up moment" of the algorithm for the respective trigger (front, rear, side). The change in acceleration, i.e., the jerk, is the decisive factor here, in conjunction with the delta-V; the airbag must be deployed very early to prevent airbag injuries, i.e., within less than 30 ms.
- 2.) Non-Deployment "without activation of any restraint system" Without activation of a restraint system, t=0 is the moment at which there was a change in speed dV of more than 0.8 km/h, namely within: t=20 ms in longitudinal direction (dt_longitudinal := 0.02 s) [corresponds to 40 km/h per sec. = 11 m/s²] or 5 ms in lateral direction (dt_lateral := 0.005 s) [corresponds to 160 km/h per sec. ~ 44 m/s² thus practically never occurs because the side airbags have already been deployed]. In case of no deployment Data is only stored, if in the further course after t0 over a time period of dt = 150 ms a dV of 8 km/h is reached [corresponding to 53 km/h per sec. = 15 m/s² as an average over 150 ms]


Acceleration in a typical front vs. rear end crash





Opel Corsa vs. VW Tiguan - collision speed = 15 kph



Example: Typical front vs. rear end crash

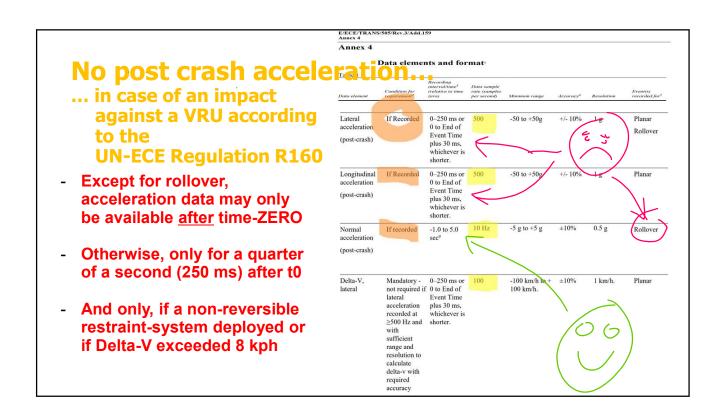
 t_{crash} = 0,163 s : $dV_{Opel\ dt_150ms}$ = 14,5 kph over the last 150 ms Delta-V exceeded trigger (8 kph)

Ergo, a recording will be in an EDR

Data elements and recording details **EUROPEAN COMMISSION** **According delegated Act of the EU Commission:**

3. LEGAL ELEMENTS OF THE DELEGATED ACT

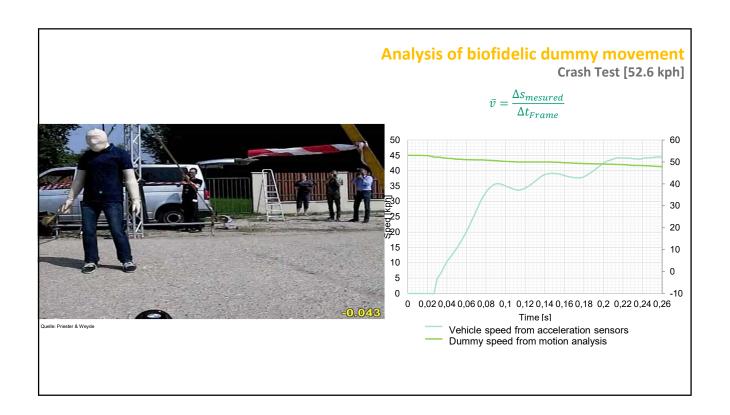
The Act establishes technical requirements and testing procedures for vehicle type-approval with regard to EDR the Act refers to the provisions of a 01 Series of Amendments to UN Regulation No 160, making its requirements applicable under the General Vehicle Safety Regulation (GSR)... These requirements concern data elements that EDR must record, the format of these data, requirements for data capture (including those on recording and overwriting of data, on-board storing and the locking of certain data records) and requirements for crash test performance...

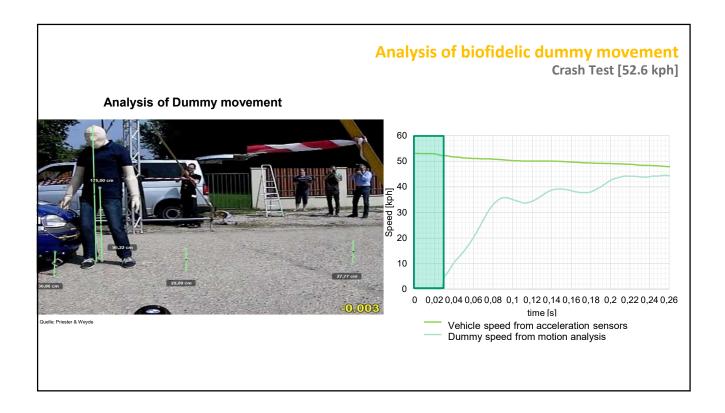

The catalogue of data elements that EDR must record is included in Annex 5 to the 01 Series of Amendments to UN Regulation 160 ...

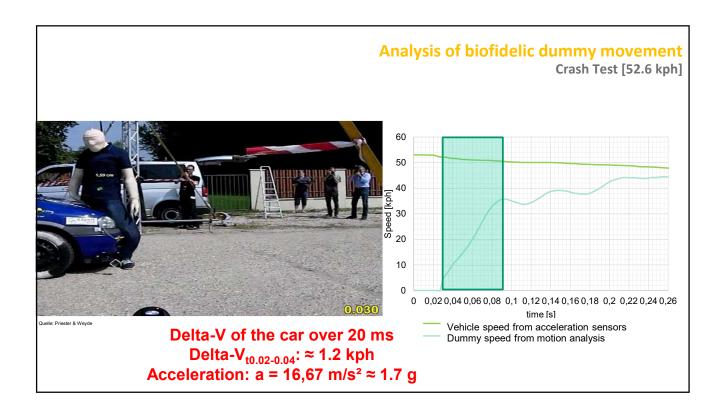
In addition to the requirements of the 01 Series of Amendments to UN Regulation 160, the Act lays down additional requirements concerning data retrieval, privacy and security of data.

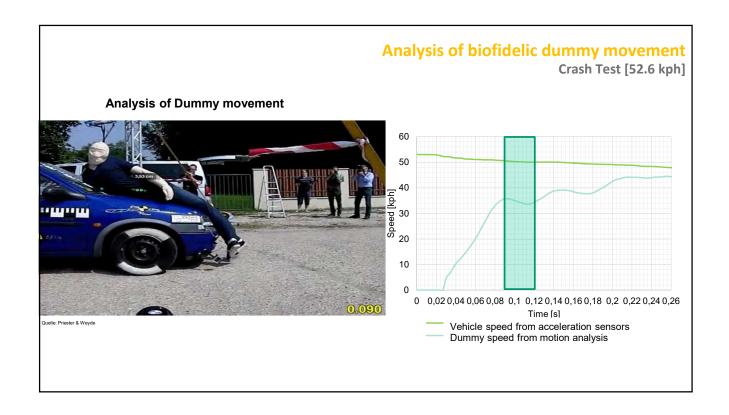
the sensor

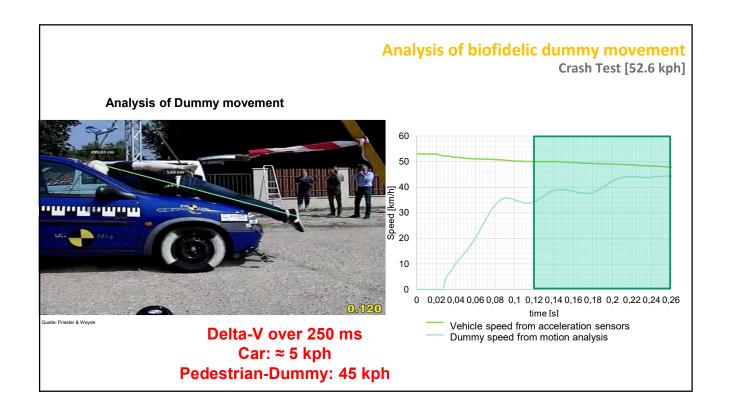
According to the amendment of 2022 recording of acceleration also prior to the Occupant size If recorded -1.0 sec 5th percentile Yes or No. classification. female or larger. Rollover 6yr old HIII US N/A Occupant size If recorded N/A -1.0 sec Yes or No. Planar Rollover front passenger ATD or smaller Fastened, not Mandatory Safety belt -1.0 sec N/A Fastened, not Planar fastened status, rear Rollover passengers Tyre Pressure N/A On, Off Mandatory -1.0 second N/A N/A Planar Monitoring Rollover System time zero Addendum 159 – UN Regulation No. 160 (TPMS) Warning Lamp Status But, only in a rate of 2 Hz, -5.0 to 0 -1.5g to +1.5g +/- 10% Planar Longitudinal Mandatory 0.1g second VRU i.e. only every 0,5 Second relative to (pre - crash) time zero and therefore in an Mandatory 2 Hz -5.0 to 0 Lateral -1.0g to +1.0g+/- 10% 0.1gPlanar insufficient frequency and second relative to (pre - crash) no Lateral Accleration and time zero Mandatory Yaw Rate -5 to 0 -75 to +75 ± 10% of 0.1 Planar Yaw-Rate in VRU Accidents seconds the full degrees / second Rollover relative to

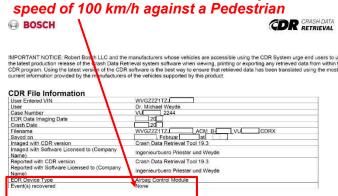

time zero




Disadvantage of present EDR-Regulations:



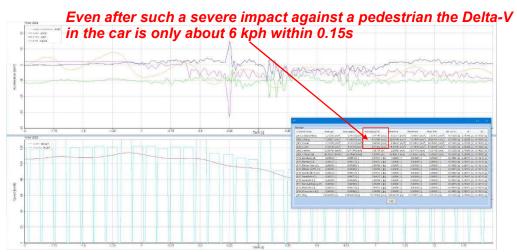

- According to UN-ECE Regulation R160 we have at least information on acceleration, steering-angle, yaw-rate in present EDR (but only 5 seconds prior to impact at 2 Hz in M1 vehicles)
- Nevertheless, collisions against VRU will not be detected by present EDR, unless there is an active bonnet, because according to US and UN-ECE-Regulation a speed change of more than 8 kph within 0,15 s is needed to trigger the recording of data
- Not only crash tests, also real cases show that speed change of M1 cars seldomly exceeds 6 kph due to impacts against VRU



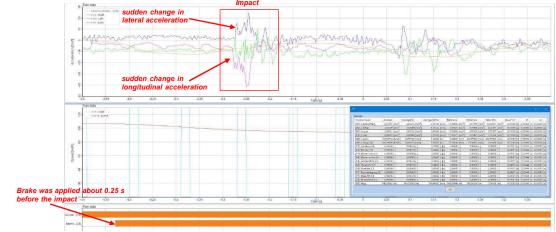
Findings from previous tests with Bioficelic-Dummies:

- During a time of 150 ms, impacts of a passenger car against a biofidelic dummy weighing 80 kg never lead to a change in speed (Delta-V) of the vehicle of more than 8 km/h
- ➤ However, a Delta-V of 0.8 km/h is often achieved within 20 ms
- ➤ Maybe this or any different Delta-V (i.e. 0.5 kph within 10 ms) could be an appropriate Trigger-Value for data storage

Case Study: Car vs. Pedestrian No EDR Data even after a severe impact at a

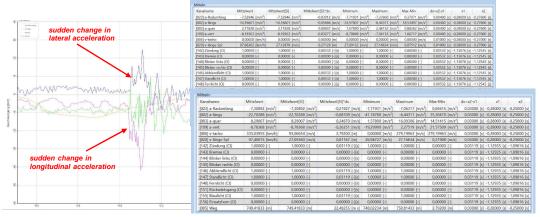


Pedestrian was killed by a Volkswagen Touran which was equipped with an U.S. EDR and an additional mounted Accident Data Storage System (UDS)


Case Study: Car vs. Pedestrian

No Data in present EDR because Delta-V over 0.15 s is too low to trigger a recording

Data from UDS: Acceleration (top graphic) and wheel speed (graphic below) of the car about 2 s before and after the impact against the pedestrian, as well as average values over 0.15 s during impact


Case Study: Car vs. Pedestrian

Although the car was braked prior to the impact, it is clearly possible to differentiate normal driving from an impact against a pedestrian by evaluation of the change in acceleration, the so called Jerk, even if the Delta-V during impact is rather small

Data from UDS: Acceleration (top graphic), wheel speed (graphic in the middle) and status data (lowest graphic) about 0.6 s before and after the impact against the pedestrian, as well as average values over 0.25 s before impact

Case Study: Car vs. Pedestrian

By analysing acceleration data it is possible to differentiate driving from an impact by the sudden change in acceleration:

Whereby the Jerk in longitudianal direction is approximately 500 m/s³ within 4 ms and 1.200 m/s³ within 30 ms due to the VRU contact

Data from UDS: Acceleration over time - about 0,5 s before and after the impact against the pedestrian, and the calculated min-/max-values

Interim Conclusion:

- Delta-V on its own is not suitable to differentiate an impact from normal driving
- Delta-V is generally below 8 kph in a normal car during an impact against a pedestrian or cyclist, thus we need a different trigger for crash detection
- Acceleration (longitudinal and lateral) is measured in a sufficient sampling rate (>>500 Hz) and resolution if car is equipped with ESC
- The Jerk derived from acceleration will not allows us to detect all impacts, but more than a Delta-V trigger of 8 kph within 150 ms
- To find a suitable Jerk-Trigger we need crash test with a suitable surrogate for vulnerable Road Users, thus a biofedelic dummy

Need to conduct further crash tests using a biofidelic dummy

Not only for a correct jurisprudence, but also for research reasons it is important to understand, what the driver had actually done before the impact, therefore we need the Event Data not only in cases, where the Delta-V exceeded 8 kph

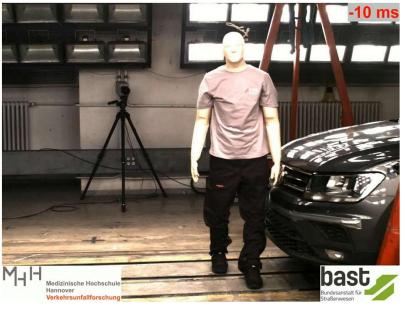
Test Programme by BASt¹ and MHH²

Car and van impacts against pedestrians and cyclists

pedestrian impacts with stationary pedestrian

bicycle impacts with moving bicycle in perpendicular direction

Impact locations and test speeds according to


accident data analysis

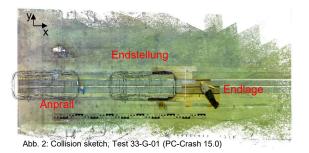
adjusted during testing in order to find critical accident severity for EDR triggering

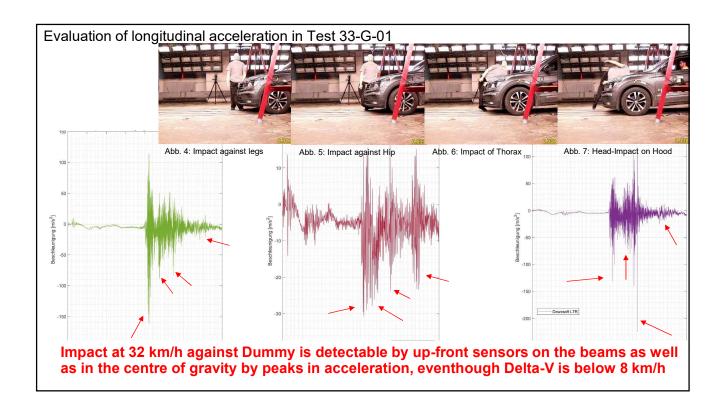
for most of the configuration tests with and without wrapping up of pedestrians were planned

- 1) Bundesanstalt für Straßenwesen, Bergisch Gladbach
- 2) Medizinische Hochschule Hannover

Test example (v_{collision} ≈ 30 kph)

Presentation of Test 33-G-01


- Modus: braked
- Target Collision Speed v_{aim} = 33 km/h
- Measured Light-Barrier Speed $\rm v_{ref}$ = 31,98 \pm 0,1 km/h
- Post collision distance $s_x = 6.35 \text{ m}$; $s_y = 0 \text{ m}$ (-0.018 m)
- Throwing distance s_{FG}= 8,2 m (8,194 m)



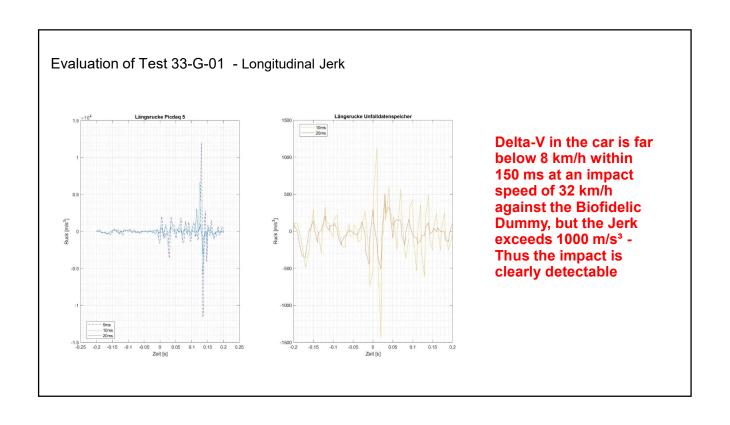
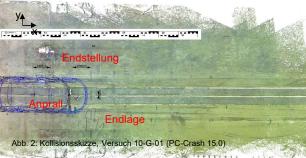


Abb. 1: Collision-Position, Test 33-G-01


Presentation of Test 10-G-01

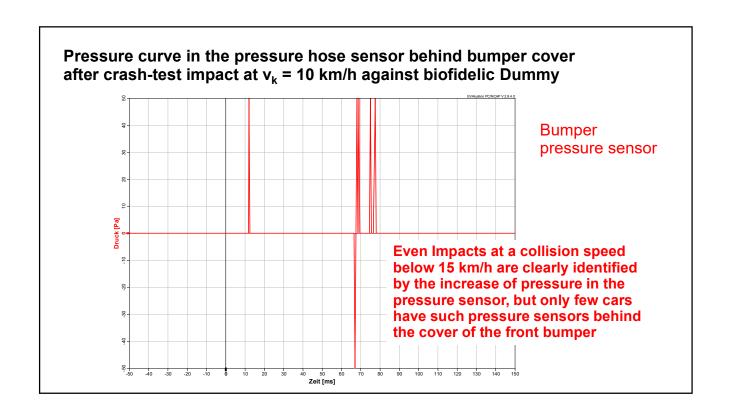
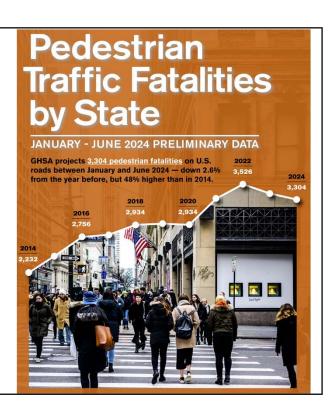

- Modus: braked
- Target Collision Speed v_{aim} = 10 km/h
- Measured Light-Barrier Speed v_{ref} = 9,98 \pm
- Post collision distance $s_{x-Car} = 0.87 \text{ m}$; $s_{y-Car} = 0 \text{ m}$ (-0,015 m)
- Throwing distance s_{Dummy}= 1 m (0,925 m)

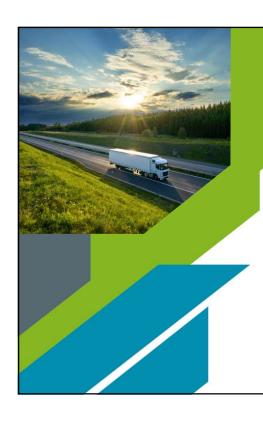
Abb. 1: Kollisionsstellung, Versuch 10-G-01

Case Study: car vs. Pedestrian

EDR Data after an impact against a pedestrian, if the car is equipped with a Pop-Up Hood

Pre-Crash Data -5 to 0 sec (Record 1, Most Recent)


Time (sec)	Anti-lock braking system activity	Stability Control	Speed, Vehicle Indicated (MPH [km/h])	Accelerator pedal, % full (%)	Service brake, on/off
-5.0	Non-Engaged	On	22 [36]	100	Off
-4.5	Non-Engaged	On	25 [41]	94	Off
-4.0	Non-Engaged	On	30 [48]	91	Off
-3.5	Non-Engaged	On	35 [56]	92	Off
-3.0	Non-Engaged	On	40 [64]	92	Off
-2.5	Non-Engaged	On	44 [71]	90	Off
-2.0	Non-Engaged	On	47 [76]	86	Off
-1.5	Non-Engaged	On	50 [80]	35	Off
-1.0	Non-Engaged	On	50 [80]	0	Off
-0.5	Non-Engaged	On	50 [80]	0	Off
0.0	Engaged	On	43 [70]	0	On


Pedestrian was servely injured by the impact.
Even the Delta-V within 150 ms was just 5 km/h,
EDR Data was stored, because the car was equipped
with a secondary Pedestrian safety sytem (Pop-Up Hood)

Increase of pedestrian fatalities **U.S. Pedestrian Deaths Hit Highest Level In 30 Years** Pedestrian fatalities in the U.S. by year* 7,000 6,000 5,000 4.000 3,000 1990-1999 2000-2009 2010-2019 * 2019 is a projection Source: Governer's Highway Safety Association statista 🗹 (c) (i) (=)

EDR - Update on VRU Triggers 27th IWG EDR/DSSAD

Federal Highway and Transport Research Institute Marcus Wisch | BASt

Priester & Weyde, Berlin
Dr. Michael Weyde | Crash Reconstruction Expert, EVU

Jerk-based trigger thresholds - Update

Three data sets were available for analyses

- New performed collision tests considering different pedestrian impact positions and ranging from lower to medium impact speeds between passenger car and 'Biofidel'-dummy as part of the BASt project FE 82.0755 'EDR trigger for detecting motor vehicle collisions with vulnerable road users'
- 9535 data records from crash data recorders of official vehicles (including also recordings of non-crash events) and records from normal driving in parts of Berlin

Impact speed around 33 km/h

| Marcus Wisch: BASt | Michael Weyde: EV

47

Findings

- Collisions between a pedestrian and a car at collision speeds above 15 km/h are clearly recognizable by the acceleration peaks, but a delta-V of 8 km/h within 150 ms is not achieved.
- The analysis of vehicle's deceleration allows detecting even minor impacts with vulnerable road users (also differentiation from normal driving and hard brakings) especially if there is a noticeable jerk that occurs simultaneously in several spatial axes:
 - Significance found at > 500 m/s³ within 4 ms and > 1.200 m/s³ within 10 ms (e.g., at the time when the pedestrian's hip impacts the vehicle's hood)

| Marcus Wisch: BASt |

48

Driving data records

Investigation for alternative delta-v trigger thresholds

- Dedicated analyses for:
 - Δ v ≥ 0.8 km/h within 20 ms (legal value for t0)
 - Δ v ≥ 0.5 km/h within 10 ms
 - Δ v ≥ 0.25 km/h within 5 ms
- Data analyses separated for impacts speeds:
 - < 15 km/h</p>
 - ▶ 15 30 km/h
 - > 30 km/h

Photo provided by Michael Weyde

| Marcus Wisch: BASt | Michael Weyde: EV

49

Conclusions

- Delta-V trigger threshold of 8 km/h within 150 ms (current standard trigger) is not appropriate for detecting collisions of a car with pedestrians.
- Alternative Delta-V trigger thresholds (e.g., 0.5 km/h within 10 ms) are promising for VRU detection
- Overall, jerk-based criterion remains preferred (future) trigger threshold to detect collisions of cars with vulnerable road users even at lower impact speeds
- Further robustness collision tests, data analyses and discussions with industry are required and will follow

| Marcus Wisch: BASt | Michael Weyde: EVU

50

Many Thanks for your Attention

Vielen Dank für Ihre Aufmerksamkeit