

0:00:00:21

Insassenbelastung unter Airbagbeteiligung bei verschiedenen Crashszenarien und Sitzhaltungen

Comparison of occupant stress in frontal collisions with varying degrees of seat belt use

Dipl.-Phys. Annika Kortmann

DUMMY. CRASHTEST. KONFERENZ. – 30.September - 01.Oktober 2020

Court case

• Opposing traffic collision on country road with slowly turning vehicle

Court case

Court case

• Evaluation of impact velocities upon vehicle damages and rest positions

 $V_{BMW} \approx 120 \text{ kph}, V_{VW} \approx 30 \text{ kph}$

 Biomechanical stress on the occupant (BMW):
 Δv ≈ 80 kph

Acutal occupant injuries:

- Thorax contusion (right side)
- Knee contusion (right side)
- Complicated fracture of foot skeleton, of tarsal bone and metatarsal joint

Structure of the series of experiments

- Three crash tests with same collision parameters, velocities and vehicle types
- Head on collision into a tree
- All tests with airbag deployment
- A PRIMUS breakable dummy with triaxial accelerometers in head/chest and hip
- Level of seat belt usage:
 seat belt fitted properly, seat
 belt worn under the left
 shoulder,
 not wearing a seat belt
- Autopsy of the primus dummy was conducted after each test

• Motion sequence of the occupant

• Resulting accelerations (CFC60 filtered)

• Head accelerations (x,y,z)

• Head accelerations (x,y,z)

• Chest accelerations (x,y,z)

Unbelted dummy

40

acceleration [g]

10

0

-10

-20

-30

-40

-50

-60

-70

Chest accelerations (x,y,z) ullet

Comparison of occupant stress in frontal collisions with varying degrees of seat belt use | Dipl.-Phys. Annika Kortmann | 01.10.2021

Z

• Chest accelerations (x,y,z)

• Hip accelerations (x,y,z)

"poorly belted" dummy (seat belt under the shoulder)

• Examples of poorly belted occupants

"poorly belted" dummy

"poorly belted" dummy

• Motion sequence of the occupant

Comparision not belted /"poorly belted" dummy

• Comparision of different crashtests is admissible due to similar acceleration levels

Comparision not belted /"poorly belted" dummy

• Head accelerations (resultant)

Comparision not belted /"poorly belted" dummy

• Head accelerations (resultant)

Propery belted occupant

• Motion sequence of the occupant

Comparison of motion sequences

• Motion sequence of the occupant

200 Hz

00:00:00:24

- States

CTS

Comparision of the biomechanical stress for all tests

• Head accelerations (resultant)

Comparision of the biomechanical stress for all tests

Comparision of the biomechanical stress for all tests

• Chest accelerations (resulant)

Comparision of the biomechanical stress for all tests

• Hip accelerations (resultant)

Comparison of injuries

• Not belted

heavy overexpansion of cervical spine

vertebral fracture

"poorly belted"

• Properly belted

Two broken ribs left side

Sternum fracture

Conclusion

- Significant results from the head on collisions onto a tree with 50 kph
 - \rightarrow not belted: double head impact, compression of cervical, chest impact on steering wheel
 - \rightarrow "poorly belted": head impact on the steering wheel, heavy deformation of the steering wheel
 - \rightarrow properly belted: no impact on steering wheel, long decelleration phase with airbag
- Similarities of the occupant motion
 - \rightarrow hip accelerations similar in all crash tests regarding amplitude and characteristics
 - \rightarrow chest accelerations similar with poorly belted and properly belted dummy (no impact)
 - \rightarrow head impact similar without belt and poorly belted (regarding peak intensities)
- Where the seat belt is worn correctly, **in combination with the airbag** the acceleration values decrease significantly and are averaged over a longer time period

The protective effect of the airbag helps in combination to the seat belt only.

Insassenbelastung unter Airbagbeteiligung bei verschiedenen Crashszenarien und Sitzhaltungen

Comparison of occupant stress in frontal collisions with varying degrees of seat belt use

Dipl.-Phys. Annika Kortmann

DUMMY. CRASHTEST. KONFERENZ. – 30.September - 01.Oktober 2020

Thank you for your attention!

